SDENG SCORE-BASED DIFFUSION MODEL FOR SURFACE ELECTROMYOGRAPHIC SIGNAL DENOISING

Yu-Tung Liu^{1,5}, Kuan-Chen Wang^{2,5}, Kai-Chun Liu³, Sheng-Yu Peng⁴, Yu Tsao⁵

¹National Yang Ming Chiao Tung University ²National Taiwan University of Technology ⁴National Taiwan University of Science and Technology ⁵Academia Sinica

Abstract

Surface electromyography (sEMG) recordings can be influenced by electrocardiogram (ECG) signals when the muscle being monitored is close to the heart

Results

	SNR_{imp} (dB)	RMSE	$RMSE_{ARV}$	$RMSE_{MF}$ (Hz)
HP	13.885	1.735e-2	3.06e-3	17.688
TS	14.279	1.626e-2	3.86e-3	23.149
FCN	17.758	1.178e-2	3.86e-3	18.038
SDEMG(Ours)	18.467	1.138e-2	2.81e-3	14.435

- Signal enhancement methods based on neural network (NN) have achieved extraordinary results in improving signal quality, few studies have explored the feasibility of neural network for ECG contamination removal in sEMG
- Distortion can be observed in the denoise result or previous methods such as high-pass filter (HP), template subtraction (TS), and fully convolutional network (FCN)
- Score-based diffusion models are a category of deep generative models that generates high quality and high fidelity samples
- This study proposed SDEMG, a score-based diffusion model, to reconstruct high-quality and high-fidelity sEMG samples from ECG-interfered sEMG signals

- The figure above concludes our method to incorporate diffusion model to sEMG denoising
- Noisy (Contaminated) signal is used as condition to avoid signal distortion and generate high quality signal
- The algorithms below show the training and sampling process of SDEMG

- Compared with high-pass filter (HP), template subtraction (TS), and fully convolutional network (FCN)
- SDEMG outperforms all other methods in every metric
- Denoise result evaluated by SNR_{imp}

SDEMG remains the preferred method under the specific condition simulating trunk sEMG with ECG contamination (i.e. SNR_{in} = -10 dB with biceps brachii sEMG from channel 11.)

(b)

Dataset

The 12-channel clean sEMG data of the NINAPro database were measured by electrodes on the upper arm. This work uses data in DB2, including sEMG from 40 subjects

Fig . The setting of sEMG measurement in NINPro database¹

For ECG artifacts, this study employs the MIT-BIH NSRD from the Physionet data bank². There are 2 ECG channels collected from 18 healthy individuals

Evaluation Metric

SNR_{imp}, RMSE, and RMSE of two sEMG features, average rectified value (ARV) and mean frequency (MF)

References

Mismatch conditions between training and testing datasets

Dataset	sEMG	ECG	SNR (dB)	
	Channel 2,			
Train	Exercise 1,	14 Subjects	-5, -7, -9, -11, -13, and -15	
	30 subjects			
	Channels 9 to 12,			
Test	Exercise 2,	4 Subjects	-14 - 0 with a step of 2	
	10 subjects			

- 1. Manfredo Atzori, et al., "Electromyography data for non-invasive naturally-controlled robotic hand prostheses," Scientific data, vol. 1, no. 1, pp. 1–13, 2014.
- 2. Ary L Goldberger, et al., "Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals," circulation, vol. 101, no. 23, pp. e215–e220, 2000.

